

# Principles of Green Chemistry & Green Engineering

Rich Engler
Program Manager, Green Chemistry Program
Office of Pollution Prevention and Toxics
US Environmental Protection Agency

engler.richard@epa.gov

www.epa.gov/greenchemistry





Approaches to Risk Reduction

Risk = f(Consequence, Probability)

Risk = f(Hazard, Exposure)









# Green Engineering – Definition

**Green Engineering** is the design, commercialization and use of processes and products that are feasible and economical while minimizing:

Risk to human health and the environment Generation of pollution at the source





## Principles of Green Chemistry

- Prevent waste
- Design safer chemical products
- Design less hazardous syntheses
- Use renewable feedstocks
- Use catalysts, not stoichiometric reagents
- Avoid chemical derivatization





## Principles of Green Chemistry

- Maximize atom economy
- Use safer solvents and reaction conditions
- Increase energy efficiency
- Design chemical products to degrade after use
- Analyze in real time to prevent pollution
- Minimize the potential for accidents





#### Principles of Green Engineering

- Seek transformative technologies to achieve sustainability
- Engineer holistically
- Use life cycle thinking
- Conserve and improve natural ecosystems
- Minimize depletion of resources





## Principles of Green Engineering

- Design such that inputs and outputs are safe and benign
- Prevent waste
- Be sensitive to local geography, aspirations, and cultures
- Engage stakeholders





# Green Chemistry Includes

- Feedstocks
- Reagents
- Catalysts
- Solvents
- Byproducts
- Coproducts

- Synthesis
- Analysis
- Monitoring
- Separations
- Reaction conditions
- Formulations





# Green Engineering Includes

- Materials balance
- Energy balance
- Mass transfer
- Heat transfer
- Thermodynamics
- Reactor design
- Unit operations

- Chemistry
- Materials selection
- Cost
  - capital
  - operation
- Life cycle
- Siting







